
Mary Poppendieck
mary@poppendieck.com
www.poppendieck.com

Lean
Software Development

An Agile Toolkit

March, 2003 Copyrignt©2003 Poppendieck.LLC 2

The Toyota
Production
System

Approach to Production
Build only what is needed
Stop if something goes wrong
Eliminate anything which does not add value

Philosophy of Work
Respect for Workers
Full utilization of workers’ capabilities
Entrust workers with responsibility & authority

Taiichi Ohno

(1912-1990)

March, 2003 Copyrignt©2003 Poppendieck.LLC 3

T im e

Changing the Mental Model

Setup Time

Received Knowledge:
Die Change is Expensive
Don’t Change Dies

Taiichi Ohno
Economics Requires Many
Dies Per Stamping Machine
One Minute Die Change

Cost of Change

Received Knowledge:
Code Change is Expensive
Freeze Design Before Code

The Agile Imperative
Economics Requires Frequent
Change In Evolving Domains
Last Responsible Moment

Agile

Received
Knowledge

March, 2003 Copyrignt©2003 Poppendieck.LLC 4

Concurrent Engineering
1981 – GM Starts the G-10 Project

1988 – Buick Regal
1989 – Olds Cutlass & Pontiac Grand Prix

1986 – Honda Starts the New Accord Project
1989 – Introduced as 1990 model
1990’s – Largest-selling model in North America

A New Mental Model
Instead of

Haste Makes Waste
Quality Costs More

We know
Delay Makes Waste
Quality Saves

2 Years Late

The Machine That Changed The World, Womack, 1990

March, 2003 Copyrignt©2003 Poppendieck.LLC 5

Stamping Dies
Toyota

Mistakes very expensive

Never-ending changes

Early Design – Early Cut

Focus: Reduce Time

Designer goes to supplier
shop, discusses changes,
implements immediately,
submits for later approval

Target cost (including
changes)

10-20% cost for changes

Half the time, half the cost

Typical US
Mistakes very expensive

Never-ending changes

Wait to Design – Wait to Cut

Focus: Reduce Waste

Designer must get multiple
signatures for changes, sends to
purchasing which sends change
document to vendor

Fixed cost (changes are extra,
profit source for supplier)

30-50% cost for changes

Twice the time, twice the cost
Clark & Fujimoto, Product Development Performance, 1991

March, 2003 Copyrignt©2003 Poppendieck.LLC 6

Concurrent
Software Development

Why are we doing this?

What needs to be done?

How do we build it?

Domain
Context

Time

Co
m

m
un

ic
at

io
n

How do we support it?

Principles of
Lean Thinking

1. Eliminate Waste
2. Increase Feedback
3. Delay Commitment
4. Deliver Fast
5. Build Integrity In
6. Empower the Team
7. See the Whole

March, 2003 Copyrignt©2003 Poppendieck.LLC 8

Principle 1: Eliminate Waste

Waste
Anything that does not create value
for the customer
The customer would be equally happy
with the software without it

Prime Directive of Lean Thinking
Create Value for the customer
Improve the Value Stream

March, 2003 Copyrignt©2003 Poppendieck.LLC 9

Seeing Waste

DefectsDefects

Task SwitchingMotion

Waiting for InformationWaiting

Building the Wrong ThingTransportation

Extra FeaturesOverproduction

PaperworkExtra Processing

Partially Done WorkInventory

Seven Wastes of
Software Development

Seven Wastes of
Manufacturing*

* Shigeo Shingo, an engineer at Toyota and a noted authority on just-in-time techniques.

March, 2003 Copyrignt©2003 Poppendieck.LLC 10

The biggest source of waste

Features and Functions Used in a Typical System

Standish Group Study Reported at XP2002 by Jim Johnson, Chairman

Always
7%

Often
13%

Sometimes
16% Rarely

19%

Never
45%

Rarely or Never
Used: 64%

Often or Always
Used: 20%

March, 2003 Copyrignt©2003 Poppendieck.LLC 11

Traditional Value Stream

Bottlenecks:
Approvals
Sign Offs
Design Review
Testing
Deployment

Total Time: ~55 weeks
Work Time ~17.6 weeks

1/3rd of the time
Wait Time ~37 Weeks

2/3rds of the time

March, 2003 Copyrignt©2003 Poppendieck.LLC 12

Lean Value Stream
Total Time: ~17 weeks

Work Time ~14.2 weeks
84% of the time

Wait Time ~2.8 Weeks
16% of the time

Levers:
Concurrent Development
Effective Gating Process

March, 2003 Copyrignt©2003 Poppendieck.LLC 13

Exercise

Choose a system you know about
Estimate % of the features are always or
often used

Choose a development cycle you are
familiar with

Estimate the average it takes to convert
customer requests into deployed software

Deploy
Code

Submit
Request

What is the Average Cycle Time

Principles of
Lean Thinking

1. Eliminate Waste
2. Increase Feedback
3. Delay Commitment
4. Deliver Fast
5. Build Integrity In
6. Empower the Team
7. See the Whole

March, 2003 Copyrignt©2003 Poppendieck.LLC 15

Principle 2: Increase Feedback

Cruise Control

Car

ThrottleComparison

Speed
Sensor

Set Speed
60 mph

CodeComparison

Current
System

Capability

System

Current
Design
Intent

Developer

Current
Business

Needs
Customer

Software Development

March, 2003 Copyrignt©2003 Poppendieck.LLC 16

The fundamental Practice
Waterfall

Doesn’t
Work!

Iterative Incremental
Development

Works!

* Craig Larman, “A History of Iterative and Incremental Development”, IEEE Computer, June 2003

A simplistic but
inferior idea, similar to
medicine’s “four humors”.*

Recommended by software
engineering thoughtleaders,
associated with numerous
successful large projects &
recommended by standards
boards.*

March, 2003 Copyrignt©2003 Poppendieck.LLC 17

Simple Rules of Iteration
Business Sets Priority

Minimum Marketable Features (MMF)
Development Team Determines Effort

Team chooses and commits to iteration goal
Use a Short Time Box

Drop features to meet the deadline
Deliver on Commitment

Develop Confidence
Create Business Value

Potentially Deployable Code

March, 2003 Copyrignt©2003 Poppendieck.LLC 18

Minimum Marketable Features (MMF)

Deploy Early & Often – Move Profit Forward

Software by Number by Mark
Denne and Jane Cleland-HuangSelf-Funding

Breakeven

In
ve

st
m

en
t

P
ay

ba
ck

P
ro

fit

Time

C
os

t

March, 2003 Copyrignt©2003 Poppendieck.LLC 19

for Troubled Projects

Increase Feedback !
Customer Feedback to Team
Team Feedback to Management
Product Feedback to Team
Upstream-Downstream Feedback

Don’t Decrease Feedback
Adding Yet More Process Rarely Helps

March, 2003 Copyrignt©2003 Poppendieck.LLC 20

Principle 3: Delay Commitment

The technology changes rapidly
The business situation evolves
Software will change!

Software products
Improve with age
Architecture is expected to change over time

Custom software
Becomes brittle with age
Architecture is not expected to change
But 60-70% of software development occurs
after initial release to production

March, 2003 Copyrignt©2003 Poppendieck.LLC 21

Cost Escalation
Two Kinds of Change

High Stakes
Constraints

Examples:
Language
Layering
Usability
Security
Scalability

Rule:
Only a Few
At a High Level

Most Changes
Keep the Cost Low!

March, 2003 Copyrignt©2003 Poppendieck.LLC 22

Predictable Outcomes

A Minnesota Wedding
August 10th

50% Chance of Rain
65-95 ºF

Invitations must
be sent in June

To Get Predictable Outcomes, Don’t Predict!
Make Decisions based of Facts, not Forecasts.

?

March, 2003 Copyrignt©2003 Poppendieck.LLC 23

Share partially complete design information.

Develop a sense of how to absorb changes.

Avoid extra features.

Develop a quick response capability.

Develop a sense of when to make decisions.

Delay Commitment

March, 2003 Copyrignt©2003 Poppendieck.LLC 24

Separate Concerns
A module should
have only one
responsibility
And only one
reason to change

Defer Implementation
You Aren’t Goanna
Need It
It costs a bundle to
maintain and a
bundle to change

Software Delaying Tactics

Encapsulate Variation
Group what is likely
to change together
inside one module
Know the domain!

Avoid Repetition
Don’t Repeat Yourself
Once & Only Once
Never copy & paste
Never!

March, 2003 Copyrignt©2003 Poppendieck.LLC 25

Principle 4: Deliver Fast
The most disciplined organizations are those
that respond to customer requests

Rapidly
Reliably
Repeatedly

Software Development Maturity
The speed at which you reliably and repeatedly
convert customer requests to deployed software

Deploy
Code

Submit
Request

Measure The Average Cycle Time

Shorter Time = More Maturity

March, 2003 Copyrignt©2003 Poppendieck.LLC 26

Principles of Speed
Pull from customer demand

Pull with an order
Don’t push with a schedule

Make work self-directing
Visual Workplace

Rely on local signaling and commitment
Kanban
Scrum Meetings

Use Small Batches
Limit the amount of work in the pipeline

March, 2003 Copyrignt©2003 Poppendieck.LLC 27

Manufacturing: Kanban

March, 2003 Copyrignt©2003 Poppendieck.LLC 28

Software Kanban

Story Cards or Iteration Feature List
How do developers know what to do?

Information Radiators
White Boards
Charts on the Wall

Daily Meetings
Status
Commitment
Need

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe Story XX

Login New User
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story YY
Login New User
Get Password
Afal;jdsa;fuwe

Story XX
Login New User
Afal;jdsa;fuwe

Tests
PassedChecked Out To Do

March, 2003 Copyrignt©2003 Poppendieck.LLC 29

Make Convergence Visible
Time to Complete (in staff-days)

0

100

200

300

400

500

600

700

jan feb mar apr may jun jul aug sep oct nov dec

Time to Complete (in staff days)

0

100

200

300

400

500

600

jan feb mar apr may jun jul aug sep oct nov dec

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Iteration

A
cc

ep
ta

nc
e

Te
st

s Tests Written

Tests Passing

March, 2003 Copyrignt©2003 Poppendieck.LLC 30

Queues

Cycle Time
Average End-to-End Process Time

From Entering The Terminal
To Arriving at the Gate

Time Spent in a Queue is Wasted Time
The Goal: Reduce Cycle Time

March, 2003 Copyrignt©2003 Poppendieck.LLC 31

Reducing Cycle Time

1. Steady Rate of Arrival
Develop In Short Iterations

2. Steady Rate of Service
Test Features Immediately

3. Small Work Packages
Integrate Features Individually

4. Reduce Utilization
You Don’t Load Servers to 90%

5. Eliminate Bottlenecks
Everyone Pitches In Wherever They Are Needed

5

March, 2003 Copyrignt©2003 Poppendieck.LLC 32

Queueing Theory Lessons

Cycle Time as a Function of Utilization and Batch Size

0

5

10

15

20

25

30

35

40

45

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
yc

le
 T

im
e

(h
ou

rs
)

Small Batches
Medium Batches
Large Batches

1. Small Batches Move Faster
2. Slack Resources Decrease Cycle Time

March, 2003 Copyrignt©2003 Poppendieck.LLC 33

XP’s 12 practices
1. The Planning Aim
2. Small Releases
3. Metaphor
4. Simple Design
5. Testing
6. Refactoring
7. Pair Programming
8. Collective Ownership
9. Continuous Integration
10. Sustainable Pace
11. On-Site Customer
12. Coding Standards

March, 2003 Copyrignt©2003 Poppendieck.LLC 34

Case Study: XP

Discussion
How do XP practices

Increase Feedback
Delay Commitment
Deliver Fast

Examples
Gearworks
Your experience

March, 2003 Copyrignt©2003 Poppendieck.LLC 35

Do
• Write tests before code
• Eliminate duplication
• Refactor mercilessly
• Leave code better than

you found it
• Only write tests for

contracts
• Write tests for bugs

(before fixing them)
• Don’t be afraid to throw

away code
• Use local databases

Don’t
• Put off refactoring
• Open up visibility just for testing
• Write time/date brittle tests
• Test generated code

From Gearworks developers

March, 2003 Copyrignt©2003 Poppendieck.LLC 36

Scrum

every 24every 24
hourshours

30 days30 days

Scrum: 15 minute daily meeting.
Teams member respond to basics:
1) What did you do since last Scrum Meeting?
2) Do you have any obstacles?
3) What will you do before next meeting?

Product Backlog:
Prioritized product features desired by the customer

Sprint Backlog:
Feature(s)
assigned
to sprint

Backlog
items

expanded
by team

New functionality
is demonstrated
at end of sprint

March, 2003 Copyrignt©2003 Poppendieck.LLC 37

Case Study: Scrum

How does Scrum
Increase Feedback
Delay Commitment
Deliver Fast

Examples
Minnesota Secretary of State UCC System
Your examples

Break

Principles of
Lean Thinking

1. Eliminate Waste
2. Increase Feedback
3. Delay Commitment
4. Deliver Fast
5. Build Integrity In
6. Empower the Team
7. See the Whole

March, 2003 Copyrignt©2003 Poppendieck.LLC 40

Principle 6: Build Integrity In

Without Refactoring
With RefactoringWhy are we doing this?

What needs to be done?

How do we build it?

Domain
Context

Time

Co
m

m
un

ic
at

io
n

How do we support it?

Integrated Product Teams Refactoring

Test-Driven Development
Requirements Refactoring MaintenanceFeedback

CodeComparison

Current
Capability

System

Current
Design
Intent

Developer

Current
Business

Needs
Customer

March, 2003 Copyrignt©2003 Poppendieck.LLC 41

Test-Driven Development

Requirements Feedback

Refactoring Maintenance

CodeComparison

Current
System

Capability

System
Under
Test

Current
Design
Intent

Developer

Current
Business

Needs
Customer

March, 2003 Copyrignt©2003 Poppendieck.LLC 42

Automated tests:
The key discipline of Agile

Don’t attempt iterative development
without automated tests
Developers will to write tests anyway

Why not write the test first?
Why not capture the tests
and automate them?
Why not make tests a
part of the code base?

Legacy code
is code without a test harness

March, 2003 Copyrignt©2003 Poppendieck.LLC 43

Agile Testing
Types of tests

Developer Tests
Do the underlying mechanisms work?

Customer Tests
Is the business purpose achieved?

-ability Tests
Load/Stress
Security
Usability

Never automated!
Etc.

March, 2003 Copyrignt©2003 Poppendieck.LLC 44

Testing Discussion

What is your company’s testing
practice?

Is testing integrated with development?
Is testing driven by requirements
documents?

Could test documents replace requirements
documents?

How much testing is automated?

March, 2003 Copyrignt©2003 Poppendieck.LLC 45

Refactoring
1. Simplicity

The goal of most patterns
2. Clarity

Common language
Encapsulation
Self-documenting code

3. Suitable for Use
Usability
Performance

4. No Repetition
NO REPITITION!

5. No Extra Features
No Code Before its Time
No Code After its Time

Without Refactoring

With Refactoring

March, 2003 Copyrignt©2003 Poppendieck.LLC 46

Isn’t Refactoring Rework?

Absolutely not!

Refactoring is the outcome of learning
Refactoring is the cornerstone of improvement
Refactoring builds in the capacity to change
Refactoring doesn’t cost, it pays

Stop!Refactor!

March, 2003 Copyrignt©2003 Poppendieck.LLC 47

Techniques for Emergence

Use automated test harnesses
Legacy software is software without a test harness

Refractor ruthlessly
Refactoring is NOT rework

Use devisable architectures
Based on a deep understanding of the domain

Provide Technical Leadership
And Communities of Expertise

Use Set-Based Design
Keep Options Open

March, 2003 Copyrignt©2003 Poppendieck.LLC 48

Leadership
Champion

Creates the vision
Recruits the team
Finds Support
‘Responsible’ for the design

Chief Engineer
Understands the Target Customer
Writes the Product Concept
Brings Customer Vision to Technical Workers
Makes Key Technical Tradeoff Decisions

Master Developer
Also Known As:

Architect
Systems Engineer
Chief Programmer

March, 2003 Copyrignt©2003 Poppendieck.LLC 49

Communities of Expertise

Matrix
Value Adding Teams

Communities of Expertise

Functional Managers
Teacher

Hire
Mentor
Set Standards
Establish Communities

Team Leaders
Conductor

Assemble the Team
Clarify the Purpose
Make Work Self Organizing
See to Individual Motivation

Communities of Expertise

Va
lu

e
A

dd
in

g
Te

am
s

March, 2003 Copyrignt©2003 Poppendieck.LLC 50

Point-Based vs. Set-Based

Point Based Design
Set up a meeting using
the point-based model.

Set Based Design
Now set up the meeting by
communicating about sets.

A: Uh, already booked.
Can you meet at 3:00?

A: I can meet
10:00 - 1:00 or
3:00 - 5:00.
Can you make any

of these times?

B: Let’s meet
12:00 - 1:00.

based on dissertation by Durward K. Sobek, II, 1997

A: My best time
is 10:00. Can you
make it?

B: No, I can’t.
How about 2:00?

B: No, 3:00
is bad. 9:00?

?

You already understand this!

March, 2003 Copyrignt©2003 Poppendieck.LLC 51

Set-Based Design
is Counterintuitive

Point Based Design Set Based Design

Analyze &
Critique

Modify

Styling

Marketing

Body

Chassis

Body Structural
Capability

Suspension
Alternatives

Styling Alternatives

Accept
able

Manufacturing

based on dissertation by Durward K. Sobek, II, 1997

Design
Solution

March, 2003 Copyrignt©2003 Poppendieck.LLC 52

Set-Based Development

→ Vehicle concept

→ Vehicle sketches

→ Clay models

→ Design structure plans

→ First prototype

→ Second prototype

→ Production trials

→ Release to production

Communicate
Constraints,

Not Solutions

Gradually
Narrow the
Tolerances

M
ile

st
on

es

March, 2003 Copyrignt©2003 Poppendieck.LLC 53

Software Examples

Medical Device Software

Choosing Technology

Web Site Design

March, 2003 Copyrignt©2003 Poppendieck.LLC 54

Discussion

Should TDD be done from developer
tests or customer tests?
Should legacy code be refractored or
discarded?
Is there a place for specialists?
What is the role of an architect?

March, 2003 Copyrignt©2003 Poppendieck.LLC 55

Software Integrity
Perceived (External) Integrity

The totality of the
system achieves a
balance of function,
usability, reliability
and economy that
delights customers.

Conceptual (Internal) Integrity
The system's central concepts work
together as a smooth, cohesive whole.

Perceived
Integrity

Conceptual
Integrity

March, 2003 Copyrignt©2003 Poppendieck.LLC 56

Integrity comes from Excellent,
Detailed Information Flow

March, 2003 Copyrignt©2003 Poppendieck.LLC 57

Agile Customer Toolkit

OneOne
DomainDomain
LanguageLanguage

Why are we doing this?

What needs to be done?

How do we build it?

Mission & VisionMission & Vision CapabilitiesCapabilities
Success ModelSuccess Model PrioritiesPriorities

Role Model, UC Model, UI ModelRole Model, UC Model, UI Model
MMFMMF’’s, User Stories s, User Stories --> Customer Tests> Customer Tests

Programmer Tests Programmer Tests --> >
Working SoftwareWorking Software

How do we support it?

March, 2003 Copyrignt©2003 Poppendieck.LLC 58

Domain Driven Design
Find the right words

Domain Language
Decide what to do

Roles
Characters

Use Cases
Plot, Dialog

Interfaces
Action

Understand Constraints
-abilities

March, 2003 Copyrignt©2003 Poppendieck.LLC 59

Conceptual Integrity

Integrated Product TeamLeast
Integrated

Most
Integrated

Timing of Upstream-Downstream Activities

Richness of Information Media

Frequency of Information Transmission

Direction of Communication

Timing of Upstream-Downstream Information Flow

Sequential
(phased)

Documents
e-mail

Batch
Transmission

(one-shot)

Unilateral

Late Release
Of Complete
Information

Stage Overlap
(simultaneous)

Face-to-Face
(high bandwidth)

Fragmented
(piece-by-piece)

Bilateral
(feedback)

Early Release
of Preliminary

Information

March, 2003 Copyrignt©2003 Poppendieck.LLC 60

Discussion:
Integrated Product Teams

You are asked to recommend members
for an IPT for your organization.

What functions would you have on it?
What level of people in the organization?
Who would lead it?
How often would it meet?
Sketch a typical meeting agenda.

Principles of
Lean Thinking

1. Eliminate Waste
2. Increase Feedback
3. Delay Commitment
4. Deliver Fast
5. Build Integrity In
6. Empower the Team
7. See the Whole

March, 2003 Copyrignt©2003 Poppendieck.LLC 62

Principle 6:
Empower the team

1982 – GM Closed the Fremont, CA Plant
Lowest Productivity
Highest Absenteeism

1983 – Reopened as NUMMI (Toyota & GM)
Same work force
White-collar jobs switch from directing to support
Small work teams trained to design, measure,
standardize and optimize their own work

1985
Productivity & quality doubled,
exceeded all other GM plants
Drug and alcohol abuse disappeared
Absenteeism virtually stopped
Time to expand the plant

March, 2003 Copyrignt©2003 Poppendieck.LLC 63

Value those who add value

Who decides what they do next?
Who designs their processes?

Do They Believe They
Make The Decisions?

Resources

Inform
atio

n

Training

Organizational Energy

Process Design Authority

Decision Making Authority

March, 2003 Copyrignt©2003 Poppendieck.LLC 64

1. Small Team
2. Clear Mission
3. Short Timeframe
4. Staffed with the necessary skills

Technology Expertise
Domain Experience

5. Enough information to determine feasibility
6. Assured of getting needed resources
7. Freedom to make decisions
8. Basic environment for good programming

Coding Standards
Version Control Tool
Automated Build Process
Automated Testing

Team Commitment

March, 2003 Copyrignt©2003 Poppendieck.LLC 65

Software Kaizen Event
Give them a challenge

Present recommendations

Decide at a Town Meeting

Implement immediately

Bring people together

Brainstorm solutions

March, 2003 Copyrignt©2003 Poppendieck.LLC 66

Principle 7: See the Whole

Aggregation
You get what you measure
You can’t measure everything
Stuff falls between the cracks
You measure UP one level
You get global optimization

Decomposition
You get what you measure
You can’t measure everything
Stuff falls between the cracks
You add more measurements
You get local sub-optimization

Span of Influence
Hold people accountable for
what they can influence
Measure at the team level
Fosters collaboration

Span of Control
Hold people accountable for
what they can control
Measure at the individual level
Fosters competition

Measure UPMeasure DOWN

March, 2003 Copyrignt©2003 Poppendieck.LLC 67

Beyond company boundaries

319 days
3 hours (0.04%) processing time
Everyone Looking Out For Their Own InterestsFr

om
 L

ea
n

Th
in

kin
g,

 b
y

Ja
m

es
 W

om
ac

k
&

Da
ni

el
 J

on
es

, 1
99

6

Mine
20 min process
2 weeks store

Reduction Mill
2 weeks store

30 min process
2 weeks store

Smelter
3 months store
30 min process
2 weeks store

Hot Roller
2 weeks store
1 min process
4 weeks store

Cold Roller
2 weeks store

< 1 min process
4 weeks store

Can Maker
2 weeks store
1 min process
2 weeks store

Bottler
4 days store

1 min process
5 weeks store

Retail
Warehouse
3 days store

Retail Store
2 days store

Home
3 days store

5 min process

March, 2003 Copyrignt©2003 Poppendieck.LLC 68

Optimize the Economic Chain

In every single case, the Keiretsu (K-ret-soo), that is,
the integration into one management system of
enterprises that are linked economically, has given a
cost advantage of at least 25% and more often 30%.*

Keiretsu : a group of affiliated companies in a tight-knit
alliance that work toward each other's mutual success.

GM: 1920’s – 1960’s
Ownership

Sears: 1930’s – 1970’s
Partial ownership, contracts

Marks & Spencer: 1930’s – ?
Contracts

Toyota: 1950’s – present
Contracts, economic incentives

* Management Challenge for
the 21st Century, Peter Drucker

March, 2003 Copyrignt©2003 Poppendieck.LLC 69

How to get Started

1. Assemble a Keiretsu
2. Map the existing value stream
3. Map the future value stream

Use Lean Principles
Indicate where key changes are needed

4. Use Kaizen events to create change
5. Repeat from (1.)

March, 2003 Copyrignt©2003 Poppendieck.LLC 70

Exercise
At what level can you assemble a Keiretsu?
What organizations would be in the Keiretsu?
Draw a current map for your Keiretsu.
Draw a future map.
List the Kaizen Events for achieving the future
map.

Principles of
Lean Thinking

1. Eliminate Waste
2. Amplify Learning
3. Decide as Late As Possible
4. Deliver as Fast as Possible
5. Empower the Team
6. Build Integrity In
7. See the Whole

March, 2003 Copyrignt©2003 Poppendieck.LLC 72

Bibliography – Lean Thinking
Austin, Robert D. Measuring and Managing Performance in Organizations. Dorset House, 1996.

Christensen, Clayton M. The Innovator’s Dilemma. Harvard Business School Press, 2000.

Clark, Kim B., & Takahiro Fujimoto. Product Development Performance: Strategy, Organization, and
Management in the World Auto Industry. Harvard Business School Press, 1991.

Collins, Jim. Good to Great: Why Some Companies Make the Leap…and Others Don’t. HarperBusiness, 2001.

Drucker, Peter F, Management Challenges for the 21st Century, Harper Business2001

Dyer, Jeffrey H. Collaborative Advantage: Winning Through Extended Enterprise Supplier Networks. Oxford
University Press; 2000.

Freedman, David H. Corps Business. HarperBusiness, 2000.

Goldratt, Eliyahu M. The Goal: A Process of Ongoing Improvement, 2nd rev. ed. North River Press, 1992.

Klein, Gary. Sources of Power: How People Make Decisions. MIT Press, 1999.

O’Reilly, Charles A., III, & Jeffrey Pfeffer. Hidden Value: How Great Companies Achieve Extraordinary Results
with Ordinary People. Harvard Business School Press, 2000.

Ohno, Taiichi. The Toyota Production System: Beyond Large-Scale Production. Productivity Press, 1988.

Reinertsen, Donald G. Managing the Design Factory: A Product Developer’s Toolkit. Free Press, 1997.

Smith, Preston G., & Donald G. Reinertsen. Developing Products in Half the Time: New Rules, New Tools, 2nd
ed. John Wiley & Sons, 1998.

Ward, Allen, Jeffrey K. Liker, John J. Cristaino, & Durward K. Sobek, II. “The Second Toyota Paradox: How
Delaying Decisions Can Make Better Cars Faster.” Sloan Management Review 36(3): Spring 1995, 43–61.

Womack, James P., & Daniel T. Jones. Lean Thinking, Banish Waste and Create Wealth in your Corporation.
Simon and Schuster, 1996. Second Edition published in 2003.

Womack, James P., Daniel T. Jones, & Daniel Roos. The Machine That Changed the World: The Story of Lean
Production. HarperPerennial, 1991.

March, 2003 Copyrignt©2003 Poppendieck.LLC 73

Bibliography – Software Development
Beck, Kent, Test Driven Development: By Example, Addison-Wesley, 2003

Beck, Kent, & Martin Fowler. Planning Extreme Programming. Addison-Wesley, 2001.

Beck, Kent. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

Cockburn, Alistair. Agile Software Development. Addison-Wesley, 2002.

Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, 2000.

Constantine, Larry, & Lucy Lockwood. Software for Use: A Practical Guide to the Models and Methods of Usage-Centered Design.
Addison-Wesley, 1999.

Cusumano, Michael A., & Richard W. Selby. Microsoft Secrets: How the World’s Most Powerful Software Company Creates
Technology, Shapes Markets, and Manages People. Simon & Schuster, 1998.

Denne, Mark and Jane Cleland-Huang, Software by Numbers: Low-Risk, High-Return Development, Prentice Hall, 2004

Evans, Eric. Domain Driven Design. Addison-Wesley, 2003.

Fowler, Martin, Patterns of Enterprise Application Architecture, Addison-Wesley, 2003

Highsmith, Jim. Agile Software Development Ecosystems. Addison-Wesley, 2002.

Highsmith, James A. Adaptive Software Development: A Collaborative Approach to Managing Complex Systems. Dorset House,
2000.

Hohmann, Luke. Beyond Software Architecture: Creating and Sustaining Winning Solutions. Addison Wesley, 2003.

Hunt, Andrew, & David Thomas. The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley, 2000.

Jeffries, Ron, Ann Anderson, & Chet Hendrickson. Extreme Programming Installed. Addison-Wesley, 2001.

Johnson, Jeff. GUI Bloopers: Don’ts and Do’s for Software Developers and Web Designers. Morgan Kaufmann Publishers, 2000.

Larman, Craig. Agile & Iterative Development: A Manager’s Guide, Addison-Wesley, 2003

Poppendieck, Mary & Tom Poppendieck. Lean Software Development: An Agile Toolkit. Addison-Wesley, 2003.

Schwaber, Ken, & Mike Beedle. Agile Software Development with Scrum. Prentice Hall, 2001.

Thimbleby, Harold. “Delaying Commitment.” IEEE Software 5(3): May 1988.

